The effects of wildland fire on conservative insects in prairie and savanna remnant habitats

The effects of wildland fire on conservative insects in prairie and savanna remnant habitats

Karl Gnaedinger Manager-Indian Boundary Prairies The Nature Conservancy in IL

Indian Boundary Prairies - a remnant -

Dr. Ron Panzer Northeastern IL University

Primary Researcher, Photographer

<u>Among our research interests</u> 1) The prevalence of conservatism among insects 2) The status of conservative species 3) The importance of site size 4) The levels of firesensitivity among insects 5) The true value of restorations as sanctuaries for vulnerable species

6) Conservation in Fragmented Landscapes---the importance and status of REMNANTS

Τ

Ecological restoration goals

• To restore degraded ecosystems to their former condition (Authenticity)

Conservation Perspective

• To contribute appreciably to the protection of the numerous species associated with them

(Conservation Value).

Kankakee Sands Restoration, June, 2006

Can humans restore an ecosystem?

Fragmented habitat remnants as

Biodiversity Reservoirs

actual managers of [PRAIRIE] natural areas

Π

practical advice for natural area managers

ECOSYSTEM-

A complex set of relationships of living organisms functioning as a unit and interacting with their physical environment.

TEMPERATE GRASSLANDS:

-Determined by H₂O regime

-Grazing [mega- & micro-fauna]

-Determined by

FIRE frequency

Saving high quality natural areas

Re-introduction of <u>a natural disturbance</u>

Naturalists-

We knew the uniqueness and rarity of plants

What are the effects of management activities on biodiversity, especially on noncribrus shin plants? P. 7-26-04

What about animals?

Conservation in Fragmented Landscapes——the importance and status of REMNANTS

-backround Where we worked

III

Fragmented Landscapes

Clear distinction in our area

between

<u>high quality remnants and large</u> <u>scale degraded landscapes</u>

disruption and fragmentation everywhere; <u>where is this not true</u>? Urban /Rural, East /West? But the above distinction perhaps may be harder to make in some areas

Prairies

Dry to Wet including sedge meadow

Savannas

Insect Inventory Sites 1982 - 2012

85 in Illinois16 in Indiana03 in Wisconsin

13 in WC Illinois05 in NW Illinois02 in NC Illinois

 Δ 's thru the seasons

Conservationists-Naturalists

What species need our help to survive the next 100 (or 500) years in our area?? What species are in danger of extinction?? or... What species need our help to survive right NOW?

Lots of species inhabit prairies • ~ 13000 insect spp.

- Est. ~ 1300 plant spp.
 - ~ 130 vertebrate spp.

Conservationists:

1st distinction-Species Vulnerable now, or not?? [Δs w/time]

∆ level of Vulnerability

Conservationists:

2nd distinction- a subset of the above, but the most relevant to our fragmented area, does the species depend on a remnant habitat to survive, or not ??

Conservative Species

The subset of species requiring authentic habitats; they do not survive in areas transformed by people into degraded habitats

Conservatism in plants is well documented

Floristic Quality Indices Missouri Colorado Florida Nebraska Illinois Ohio South Dakota Iowa Michigan Wisconsin **USFWS** USACE

How is conservative or remnant dependent status determined, for insects?

Searching in remnants, but then also searching [endlessly] in changed [degraded] habitats, such as

- Old Fields [Eurasian Meadow],
- \circ roadsides,
- o ditches,
- \circ even cropped areas
- even lawns

Relative numbers of prairie-associated species of conservation concern

1090 species

Sayapion segnipes

Sayapion segnipes off Tephrosia, gmp Sep 06

~ 18% of the insect species that inhabit prairie IN OUR REGION are conservative.

Small sítes are important [size is overrated]

Distribution of 'rarity' among R-D insect species

Conservative insects: CW status

Short Summary

- 15-20% of the prairie-inhabiting insects of the CW region are remnantdependent.
- Every remnant supports some species.
- Roughly 1/3 are seemingly secure.
- Roughly 1/3 clearly are not.
- Insects represent a substantial proportion of the imperiled biodiversity in this region.

R-D SUMMARY

There are hundreds of known conservative insect species inhabiting Midwestern prairies and sand savanna remnants of all sizes.

Probably a third or more are absent from most remnants, and should be considered to be rare.

Most are incapable of recolonization from distant locations.

Remnant Dependent [R-D] Species

Obviously, in a fragmented landscape, it is unrealistic to expect most conservative insects species to re-populate distant sites if their entire isolated population is extirpated

which brings us to

Fire is a natural periodic disturbance in terrestrial ecosystems

PRAIRIES NEED SOME LEVEL OF FIRE, AND INSECT POPULATIONS CAN RECOVER FROM THE CAUTIOUS USE OF ROTATIONAL COOL SEASON PRESCRIBED FIRE

VERY SHORT RESULTS: SMALL, HIGH QUALITY, NATURAL AREA REMNANTS HOLD MUCH OF THE IMPERILED BIODIVERSITY THAT REMAINS IN THE MIDWEST REGION.

FIRE ADVERSE ENTOMOLOGISTS

<section-header><section-header>

FIRE LOVING BOTANISTS

PRAIRIES NEED SOME LEVEL OF FIRE, AND INSECT POPULATIONS CAN RECOVER FROM THE CAUTIOUS USE OF ROTATIONAL COOL SEASON PRESCRIBED FIRE -how often [frequency] -how done [ringing?] -what conditions

Eg.- IBP protocol for invertebrate survivorship

- 1. We employ 2, 3 and 4 year burn rotations (50%-33%-25%) of the HIGH QUALITY habitats
- 2. Allow 3 years for recovery following "wildfires" that leave small and scarce refugia
- 3. Avoid infernos by sticking to conservative burn prescriptions [our window may △ for you]
 - > 25% Relative Humidity
 - < 75° F
 - < 20 mph Winds

Fires can be of greatly varying intensity

Avoid extreme conditions;... yet if there is fire,... it has reached the point of ignition Eg.- IBP protocol for invertebrate survivorship

4. Mow and/or burn "defensive" firebreaks to control for wildfires

- 5. Reduce fire intensity- for Eg; Begin burns earlier in the day in sensitive upland habitats
- 6. Maintain skips
- 7. Protect "special" patches for specific reasons
- 8. Mow select areas if there are reasons to avoid fire for some years

Panzer et al. 1992 – 2006 CB, BC, NAJ

- 46 sites, IL, IN, WI
- 55 burns (21 sites)
- 1 600 ha.
- Xeric wet
- 154 insect spp.
- 73 are conservative

MUCH RESEARCH SUPPORTS A POSITION ON FIRE FREQUENCY SOMEWHERE IN THE MIDDLE OF NONE TO YEARLY Harper, Siemann et al; Tooker and Hanks., etc The compatibility of prescribed burning and the conservation of insects in fragmented landscapes.

Plants: • Often Long-Lived

> Roots below ground

<u>Insects</u>: - short-lived

-many (dormant) above ground -many incapable of movement between sites

Annual or less than annual Species

life history attributes Conservative species 73; RI 81 ~ 400 tests \bigcirc Duff 68 - soil 05 \bigcirc Upland 45 - wet 28 \bigcirc Univoltine 61- multivoltine 12 \bigcirc Winged 58 - flightless 15 \bigcirc Common 48 - uncommon/rare 23 \bigcirc

Erímobina jocasta, West Chicago Prairie, July 23, 2004

Prairiana kansana angustans

Polyamía apícata (3 mm)

Polyamia rossi

- 1) Response (initial impact) 0 + fire-sensitivity correlates [ecological or life history attributes (-)
- 2) recovery (with refugia present) mechanisms (recolonization versus in situ survival)
- **3) Species composition & richness**

(are fire managed sites depauperate?)

- 4) intense and complete burn case study (any survivors?)
- 5) Consecutive fire test

Initial impact

Predictable? Effect direction? Effect size?

Consistent species population responses to fire [with refugia] +, 0, or –. 8 R-D species, independent replications Hecalus flavidis Aflexia rubranura Cribrus shingwauki rned vs. unburned relat oopulation densities 022 03 R 03 R 108 06 095 095 BL CMC NE HE HE R 93% of Diapheromera blatchleyi Polyamia caperata all species responded CECES POC CE DE DE DE CIE VE CAR CAR CAR CE DE AL DE CB AR BR BR BR CM PCP Papaipema ervngii consistently Philaenus spumarius Problema byssus to fires CCPSL GMP 96

SP CEP CE LIE NE NE NO

CIP CIP CIP CIP CIP CIP

GMP97

Papaipema beeriana (-)

Mean Sample Size

Initial impact

- \odot 80% of soil dwellers were fire positive or neutral.
- 41% of all species were fire-negative
- 42% of **native** species fire-sensitive.
- 38% of **exotic** species fire-sensitive.
- \odot 59% of all r-d species were fire negative.
- \odot Mean mortality for fire-sensitive r-ds about 70% .
- Significant associations between fire-sensitivity and upland inhabitance and non vagility.
Post Fire Recovery

How long? flightless species Univoltine species

How? In situ survival Recolonization

Post fire population recovery Tracked 185 populations [61 species] through one season. Tracked 55 populations through two seasons. ○ 2/3rd of 61 species had mean recovery times \leq 1 year. OAII 61 species had mean recovery times ≤ 2 years.

68% of all species recovered in one year:

Post fire recovery

 O 3 populations each of a different species did not recover in two years. (however, 13 other pop. recovered in ≤ 2yrs)

 53 vagile species did not recover faster than 11 wingless species. (88% in situ survival).

 Onivoltine species tended to recover more slowly than multivoltine species

Recovery Mechanisms a. Survival in place -underground -small internal refugia -incomplete burn [in duff]

b. Recolonization

IF AN ENTIRE SITE IS BURNED? Some insect species may survive based on placement or intensity effects [survival] However, many species will not.

^{2a} WHAT IF RECOLONIZATION IS NOT POSSIBLE?

We completely burned 40 isolated patches on 3 sites to do a small scale test of this for 6 species. R-D; Duff Dwelling; Uni-voltine; Non-vagile [most wingless]; testing in-situ survival

Survivorship following complete burns; sampled before re-colonization could occur

Patches	~ 4 m ²	~ 8 m ²	~ 16 m ²	~ 32 m ²
(40)				
With	3	11	12	11
survivors				
Without	1	2	0	0
survivors				
Total tests	4	13	12	11

IN PLACE SURVIVAL CAN BE IMPORTANT: LEAVE SKIPS ALONE

The maintenance of nearby refugia is essential

Increasing distance from recolonization source

Figure 2. Distribution of postfire population density within recovering populations of *Laevicephalus unicoloratius* recently-burned prairie. Spatial scale is shown in meters. Site acronyms are listed in Table 1.

 Response (initial impact) - 0 + fire-sensitivity correlates [ecological or life history attributes (-)
 recovery (with refugia present)

mechanisms (recolonization versus in situ survival)

3) Species composition & richness (are fire managed sites depauperate?)

 intense and complete burn case study (any survivors?)

5) Consecutive fire test

Figure 1. Fire Attrition Model. The fire attrition hypothesis predicts that short burn return intervals will result in increasingly smaller population sizes and will culminate in the extirpation of fire-sensitive species.

3

Fire Managed sites did not loose species

Species butterflies, all species leafhoppers, all species **F-M**: $0.388x + 0.463 t^2 = 0.798$ F-M: $0.251x + 0.887 t^2 = 0.527$ $F-E: 0.292x + 0.414 r^2 = 0.108$ $F-E: 0.285x + 0.796 r^2 = 0.832$ 1.5 -**Richness** 1.6 elevations: t=1.86; df=25; p=0.0717 elevations: t=1.43; df=25; p=0.1644 h 1.4 а 1 1.2 0.5 In fact, there × 0.8 log species richness 0.6 N C1 so. 5 were more R-D butterflies, sedge meadow leafhoppers, sedge meadow associates excluded associates excluded **F-M**: $0.366x + 0.445 r^2 = 0.806$ $F-M: 0.240x + 0.866 r^2 = 0.504$ $F-E: 0.371x + 0.308 r^2 = 0.243$ butterfly and $1.6 - F-E: 0.340x + 0.657 r^2 = 0.665$ 1.5 elevations: t=2.52; df=25; p=0.0184 elevation: t=2.85; df=25; p=0.0075 1.4 d leafhopper 1 1.2 . 1 0.5 species in the 0.8 X X XXX × 0.6 10 LO. LO, FM systems log site size Site Size

Insect population densities within 7 paired fire-managed and fire-excluded sites. (64 populations; 36 spp.)

	no. populations	
no sig. difference between sites	30/64 *	
greater densities in fire managed sites	28/64 (44%)	
greater densities in fire excluded sites	6/64 (10%)	

Distribution of 24 exclusive spp. Among 46 CW sites

- Fire-managed sites Fire-excluded sites
- 4/27 butterflies
- 15/64 leafhoppers
- 0/27 butterflies
- 9/64 leafhoppers

No support for the attrition of species by fire hypothesis

- FM sites supported equal or greater numbers of r-d species than FE sites.
- Population densities tended to be greater on FM sites. (44% vs 06%)
- 19 of 28 (68%) exclusive species occurred solely on Fire Managed sites.
 Published in Biol. Cons.

1) Response (initial impact) - 0 + fire-sensitivity correlates [ecological or life history attributes (-)

2) recovery (with refugia present) mechanisms (recolonization versus in situ survival)

3) Species composition & richness (are fire managed sites depauperate?)

4) intense and complete burn case study (any survivors?)

5) Consecutive fire test

Catastrophic wildfire

A GRANT CREEK PRAIRIE NATURE PRESERVE

April 14, 2003 80+ degrees Winds ~30mph Humidity low

VI, 4

Post-fire insect study, Grant Creek Prairie (2003-2007)

Attributes*:	Univoltine (1 generation)	Above ground	Upland species	Flightless species	Species of CC
28 moth species	28	25	13	0	18
2 leafhopper species.	2	2	1	2	1

* Thought to contribute to fire-vulnerability

Initial impact

Will surviving populations be smaller than expected?
Will any species be lost?

Expected responses

- Fire positive 02
- Fire neutral 03
- Fire negative 09
- Unknown, presumed
 fire-sensitive
 16

25/30 species known or presumed to be fire-sensitive.

Characterization of relative <u>population sizes</u> for 30 insect species following a total burn of the Grant Creek Prairie in the spring of 2003.

** flightless leafhoppers recovered

Relative population size classes	2003†	2004	2005
expected ("normal")	11 *	15**	22
smaller than expected	6**	5	7
undetectable	13	10	1

† measure of fire intensity

* 4 of 5 fire-neutral/positive species

19/30 spp. Scarce or undetectable in year 1

Post fire recovery

Will the lack of refugia lengthen historic and projected recovery intervals?

 Have any species been extirpated?

P. eryngii requires an "extra" year Following intense fire. *Papaipema eryngii*, larvae

7/17 species still scarce after 2 years

Initial impact & recovery over 4 years

Population size classes	2003	2004	2005	2007
expected	11	15	22	25
smaller than expected Not Recovered	06	05	7	4
undetectable Extirpated?	13	10	1	1

Intense and Entire Site burn summary

- Response sizes for 19/30 species were more severe than expected. (fire intensity)
- 11/19 species recovered in ≤ 2 years ("normal")
- 3 species required 3 or 4 years.
- 5 species had not recovered after 4 years.
- One species has not been seen and may have been lost.

1 species apparently extirpated in this event Has not recolonized from a site 1 mile away

Intensity of fire
 Everything [Entire Site] burned

Burning everything may not be a good strategy for us to preserve conservative insects 1) Response (initial impact) - 0 + fire-sensitivity correlates [ecological or life history attributes (-)

- 2) recovery (with refugia present) mechanisms (recolonization versus in situ survival)
- 3) Species composition & richness (are fire managed sites depauperate?)
- 4) intense and complete burn case study (any survivors?)

5) Consecutive fire test

Consecutive Burning
Consecutive Burning Issues Trade off in effects-

 Increasing fuel load <u>without fire</u> [~ up to 5 years in prairie] with subsequent increase in fire intensity when fire does occur

Vs.

 Not leaving time between fires for insect populations to recover Double-burn responses recorded for 32 12 species in 48 tests (b_1/u_1 versus b_2/u_2) paired sites

Species	Species considered	Double burn RESPONSES (populations)		
groups	(pop- ulations)	(less severe)	(non significant)	(more severe)
Fire positive	7 (8)	1	5	2
Fire neutral	7 (10)	0	8	2
Fire negative	18 (30)	2	19	9
Totals	32 (48)	3	32	13

Conducted on 6 sites paired

w/ Leafhoppers, 2 *Bruchomorpha*, 7 Butterflies, & *C. saltans*

Significant effects were usually negative, suggesting the consecutive burning is more likely to threaten than protect duff-inhabiting species.

Increasing fuel load without fire [~ up to 5 years in prairie] with subsequent increase in fire intensity being <u>significan</u>t to mortality UNCERTAIN HYPOTHESES

Not leaving enough time between fires for insect populations to recover SHOWN BY OUR STUDIES TO BE TRUE

Summary

- Hundreds of conservative insect species persist solely on remnants.
- Roughly half are fire sensitive (FS).
- Fires often reduce FS populations to very small numbers. (80-100% killed)
- Species that inhabit dry and mesic habitats, and those with single generations are especially vulnerable.
- <u>Most</u> FS species require 1 or 2 years to recover following "normal" burns (with refugia present).
- Unburned refugia and skips play essential roles in the recovery of small populations.
- Complete burns should be avoided .
- Use rotational burning

http://www.neiu.edu/~cwinsect/ The End

